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Table 3. Indication of  the symmetry-equivalent atom 
taken for the calculation Of Xm,Ym, Zm (Table 2) 

The atomic coordinates given by Fang, Robinson & Ohya are 
called x,y+½,z 

x y z 
i x l + y  z 
ii - l + x  y z 
i i i  1 - x - y  1 - z 
iv - 1 + x  1 + y  z 
v 1 --x - y  --z 
vi  - - x  - - y  - - z  
v i i  1 + x y z 
v i i i  - - x  - - y  1 - - z  
ix  - - 2 + x  y z 

monoclinic cell as twin axis (Kelsey & McKie, 1964). 
Similar polysynthetic twinning occurs in two other 

minerals, isostructural with aenigmatite, namely rh6n- 
ite, Ca2(Mg, Fe+2)4Fe+aTiAlaSi3020, (Walenta, 1969) 
and krinovite, Na2Mg4CrzSi602o, (Merlino, 1972). The 
diffraction patterns of such twins (Walenta, 1969; 
Merlino, 1972) show that they are built of alternating 
ordered regions with structures MDO1 and MDO~ with 
common boundary layers. This twinning is in keeping 
with the definition of OD twins by Dornberger-Schiff 
& Grell-Niemann (1961). 

We may thus conclude that sapphirine, Mautia sap- 
phirine and aenigmatite are members of isomorphous 
families of OD structures, and that the same is prob- 

able - in spite of their very different chemical compo- 
sition - of rh6nite and krinovite. 

Aenigmatite and sapphirine are ordered members of 
their family, Mautia sapphirine is a disordered member. 
The twinned structures of aenigmatite, rh6nite and 
krinovite correspond to an intermediate degree of 
ordering: the twin individuals may be considered as 
periodic OD structures, but the twins are non-periodic 
OD structures, as the twinning violates the periodicity. 
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On the Non-Centrosymmetric Structures which Produce Centrosymmetric 
Diffraction Patterns even with Anomalous Dispersion 
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The geometrical conditions that a structure gives centrosymmetric diffraction patterns have been 
investigated. It is shown that Friedel's law may hold for certain non-centrosymmetric structures con- 
taining two or more kinds of anomalous scatterer. Therefore, their absolute configurations can never 
be established by ordinary absorption-edge techniques. The geometrical characteristics of such a 
structure are discussed in terms of a vector set. 

I n t r o d u c t i o n  

When a non-centrosymmetric crystal contains anoma- 
lous scatterers for a given incident radiation Friedel's 
law does not hold and the crystal will give non-centro- 
symmetric diffraction patterns with a symmetry which 
is in general proper to the point group of the crystal. 
However, there may be exceptions. An obvious excep- 
tion is found in the well-known fact that the diffrac- 
tion patterns from a non-centrosymmetric crystal are 

always centrosymmetric even with anomalous disper- 
sion when the crystal consists of only one kind of atom 
[i.e. the crystal of an element, such as ~-manganese 
(space group 1-43m), metallic selenium and tellurium 
(both P3121 or P3221)]. 

In the present paper, it is pointed out that there may 
exist certain kinds of non-centrosymmetric structures, 
other than elements, for which Friedel's law is always 
valid even in the case involving X-ray anomalous dis- 
persion. 
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Conditions for Friedel's law 

Let us consider a crystal containing N kinds of atoms. 
The crystal can be divided into N substructures so that  
the p th  substructure, Sp, is composed of a toms of 
only the p th  kind. If the origin of Sp is chosen accord- 
ing to a convenience due to the symmetry of Sp, the 
structure ampli tude F for a reflexion with a given in- 
dex h is written as follows: 

F(h) = ~pFp(h) exp (2~zih. up) 

= ~pfp0a)Gp(h) exp (2rcih. up), (1) 

where Up is the vector from the origin of the crystal to 
that  of Sp, fp is the atomic scattering factor for atoms 
in Sp, and Fp and Gp are the structure factor and 
effective geometrical structure factor for Sp respec- 
tively.I" The summat ion is taken over substructures. 
Generally fp has a form 

fp =fo  + A J; + iAf'p' 
-f 'v+if'v' . 

We assume here that  f " ¢  0, hence:l: 

f ( h ) = f ( - h ) ~ : f * ( - h )  
while 

G ( h ) = G * ( - h ) .  

Using relations (1), (2) and (3), we obtain 

AI = If(h)l 2 -  I F ( -  h)l z 
= -4~p>~(fj~f'~-f '~'f~). Im [Gp(h)Gg(h) 

x exp {27rih. (Up-Uq)}], 

where Im(z) is the imaginary part  of z. 
Now, define the phase fac tor  ep by 

G,= IGpI exp (ic~p). 

Then, AI vanishes and Friedel 's law holds if either 

Gp = 0  for all p except for one, 
o r  

C~p- ~ + 27rh. ( u p -  uq) = nzr (n" integer) 

for any combinat ion of p and q, for any h. 

(5-1) 

(5-2) 

Examples 

Equat ion (4) states that :  (i) a centrosymmetric crystal 
always gives centrosymmetric  diffraction patterns, 
since all uo's can be taken to be (000) and Gp's are real, 
(ii) A I = 0  if the crystal contains no anomalous scat- 
terers, and (iii) a crystal consisting of only one kind of 
a tom gives always centrosymmetric diffraction pat- 

t h=-(hkl); u=--(uvw); uvw as fractions. 
Note that f (h )= f* ( -h )  if the imaginary part of f is due 

only to the effect of bonding electrons or acentric thermal 
vibrations of the atom. In that case Friedel's law holds. 

terns.{} In this section, we examine several structures, 
other than these three cases, for which Friedel 's law 
is always valid. For  simplicity, crystals containing only 
two kinds of a tom are considered. In this case we can 
take ul = (000) and u2=u ;  and the conditions for Frie- 
del's law are given by 

o r  

or 

for any h. 

G I = 0  (6-1) 

G2 = 0 (6-2) 

el - e z -  21rh. u = nzr (6-3) 

(i) Crystals consisting of  two geometrically identical 
substructures 

First, assume that  the geometrical structures of two 
substructures are exactly the same. The conditions (6) 
become 

G1 = Gz = 0 (7-1) 
or 

h.  n = n/2 (7-2) 

for any h. The relation (7-1) is trivial. The combinat ion 
of two centrosymmetric substructures under the con- 

(2) dition (7-2) always gives a centre of inversion to the 
crystal. On the other hand, under the same condition,  

(3) two non-centrosymmetric  substructures form a non- 
centrosymmetric  composite structure for which Frie- 
del's law always holds irrespective of the space-group 
symmetry of the substructures presumed. 

Fig. 1 illustrates one of the simplest examples of this 
type. The space-group is P21 (b axis unique), and u =  

(4) (0,½,0). 

{} For the case of an element in which atoms in different 
crystallographic sites are in different bonding states, see 
Chandrasekaran (1968). 

y 

0 x 
(a) (b) 

Fig. 1. A simple example of the non-centrosymmetric structure 
which gives centrosymmetric diffraction patterns. (a) Basic 
substructure with the space group P21, comprised of polar 
'molecules' as represented by triangles. (b) A composite 
structure consisting of two substructures with u=(0,½,0). 
Shaded and open triangles compose the substructures 1 and 
2 respectively. The structure is non-centrosymmetric, while 
Friedel's law holds even with anomalous dispersion. 
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(ii) Two different non-eentrosymmetric substructures 
Even when a crystal is composed of two different 

non-centrosymmetric substructures $1 and S2, the rela- 
tion (6-3) may hold if a proper systematic correlation 
exists between ~1 and ~2. For example, assume that S~ 
and $2 have face-centred and body-centred structures 
respectively, both being derived from the geometrically 
identical primitive cell. In this case G~ = 2G2 for reflex- 
ions with all even hkl, and for these reflexions equation 
(6-3) reduces to 

h . u = n/4 . 

For reflexions of other types, either (6-1) or (6-2) is 
valid. 

(iii) One eentrosymmetric substructure S~ and one non- 
centrosymmetric substructure Sz 

In this ease we may take u = (000). The relation (6-3) 
reduces to 

~2 = 0 or 7~ . 

The conditions for Friedel's law are satisfied if, for 
example, S~ is face-centred, $2 is body-centred and if 
all the xyz parameters in $2 are limited to multiples of 
¼ as shown in Fig. 2. 

(iv) Two different centrosymmetric, substructures 
In this case, equation (6-3) becomes 

h.  u = n / 2 .  (8) 

Non-centrosymmetric structures for which the rela- 
tions (6-1), (6-2) or (8) are valid do exist. Consider a 
hexagonal crystal with atoms in the following posi- 
tions (coordinates referred to each origin of the sub- 
structure): 

S~" +cz r la. 
1 I • s2" +(3,~,¼, ~,0,¼; 0,~,¼); 

u=(0,0,-~). 

The space group is P6322. It is seen that 

£'1=0 if h - k = 3 n  and l=2n+ l ; 
Fz=O if h - k # 3 n ;  

0-+ 
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Fig. 2. A structure consisting of one centrosymmetric and 
one non-centrosymmetric substructure. Substructure 1: 
face-centred, centrosymmetric, indicated by open circles. 
Substructure 2: body-centred, non-centrosymmetric, com- 
posed of black circles. The composite structure is non-centro- 
symmetric and gives centrosymmetric diffraction patterns. 

and the equation (8) is satisfied if h - k - ~ 3 n  and l--2n. 
TheIefore, Friedel's law always holds for this struc- 
ture. In a structure of this type, the local symmetry 
seems to be reflected in the symmetry of diffraction 
patterns. 

The symmetry of the above structure reduces to 
space group P63 when u is shifted to (00z). It is in- 
teresting that this deviated structure gives diffraction 
patterns with a higher Laue symmetry: 6/mmm (Iwa- 
saki, 1972). 

Vector set and Frieflers law 

In this section, geometrical characteristics of a struc- 
tuIe, for which Friedel's law holds even with anoma- 
lous dispersion, are pointed out. The basic idea is an 
extension of that involved in the explanation of the 
diffraction enhancement of symmetry given by Sada- 
naga & Ohsumi (1974). 

Let up~ be the vector from the qth atom to the pth 
atom. When anomalous dispersion is not involved, the 
Patterson peaks corresponding to upq and uqp have the 
same value, and as far as the diffraction effect is con- 
cerned, up~ is equivalent to uqp. The situation is similar 
even with anomalous dispersion when the pth and qth 
atoms are of the same kind, since the phase difference 
of the X-rays diffracted by these two atoms is deter- 
mined by their path difference alone. These vectors are 
'eolourless' in the sense that they are irrelevant to the 
Bijvoet differences. When all the vectors in a crystal 
are colourless, the symmetry of the vector set is rep- 
resented by a certain ordinary (colourless) space group, 
and usual Fnedel's law holds. The case of a crystal of 
an element is, of course, included in this category. 

If different anomalous scatterers are concerned, how- 
ever, up~ and uqp become not equivalent. The imaginary 
part of the Patterson function, Ps(u), has peaks propor- 
tional to A~,q=f'~'f~-f~'f'q and to Aqp at u=up~ and uqp, 
respectively (Okaya, Saito & Pepinsky, 1955). In con- 
formity with the fact that the function Ps is the Fourier 
transform of AI, the vectors between different kinds 
of atoms are responsible for the violation of Friedel's 
law. For simplicity, let us consider a structure con- 
sisting of two kinds of atoms and let us call them 
'black' and 'white' atoms. According to the Ps peaks 
at Up~ and u~p, it is very natural to designate a vector 
from a black atom to a white atom a 'black' vector, 
and the one from a white to black atoms a 'white' 
vector. (Note that a black vector is always transformed 
into a black vector, not white, by an inversion of the 
coordinate system.) The distribution of these black and 
white vectors has at least asymmetry of anti-inversion. 
In a centrosymmetric crystal, black and white vectors 
with the same magnitude and direction (including 
sense) always coexist, and the symmetry of the vector 
set is represented by a 'grey' space group. In a non- 
centrosymmetric crystal, on the other hand, some white 
vectors may be eclipsed by black ones while others not; 
and the black-and-white vector set is generally a super- 
position of an antisymmetric part and a centrosym- 
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metric grey part, the symmetry of the former being 
represented by a certain black-and-white space group. 
In such a case Friedel's law breaks down. 

In a structure as treated in the present paper, the 
black and white vectors as a whole form a complete 
'grey' set as in a centrosymmetric crystal. In fact, if 
Friedel's law holds, Ps must vanish over the entire range 
of u, and this means that each black vector must have 
its own white mate with the same magnitude and direc- 
tion and sense. Such a circumstance can be seen, for 
example, by inspection of Figs. 1 and 2. In summariz- 
ing, Friedel's law holds for any crystal involving two 
kinds of anomalous scatterers, if the symmetry of a 
black-and-white vector set as defined above is repre- 
sented by a certain 'grey' space group. 

Conclusion 

It has been shown that Friedel's law may hold in cer- 
tain non-centrosymmetric structures other than crys- 
tals of elements, even with the anomalous dispersion. 
For such a crystal, if one exists, the absolute configura- 
tion cannot be determined by the conventional X-ray 
absorption-edge techniques. The point group of such 
a crystal cannot be detected by a statistical treatment 
of intensity differences between possible Bijvoet pairs 
(Ibers, 1967). No structure of this type seems so far 
to have been recorded, though one may be found in 
future. 

It should be noted that the condition (6-3) is always 
satisfied for reflexions with some special indices, if the 
xyz parameters of all atoms, as well as the three com- 
ponents of u, are certain rational fractions of the cell 

edges. For example, the well known zinc-blende struc- 
m 

ture (space group F43m) consists of two geometrically 
identical substructures with , , - t !  ± x~ Thus, the rela- 

• a - -  \ 4 ,  4 ,  4 1 "  

tion (6-3) holds if indices hkl are all even. The centric 
intensity distribution in these reflexions, in part, arises 
entirely from the special arrangement of atoms or of 
substructures. A partial Friedel's law of this type, not 
as a result of the space-group symmetry, is quite com- 
mon in a number of crystals of inorganic compounds. 

In connexion with this it should be added also that 
Friedel's law may hold to a very good approximation 
in several non-centrosymmetric molecular crystals. 
Practically this problem is sometimes important. Con- 
sider a crystal containing atoms of a large atomic 
number and non-anomalous light atoms. When the 
heavy atoms are arranged with a certain kind of sym- 
metry higher than that of the crystal, they contribute 
only to reflexions with certain special indices according 
to the local symmetry. In such a case, these reflexions 
often exhibit pseudocentric patterns owing to the large 
contribution of heavy atoms to diffracted intensities, 
whereas other reflexions show partially centrosymme- 
tric diffraction patterns. In a 'pseudo-Friedel' case of 
this type, some difficulties may occur in the determi- 
nation of the absolute configuration. 
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Systematic Errors in Polarization Corrections for Crystal-Monochromatized Radiation 
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The polarization expressions for crystal-monochromatized radiation have been evaluated for both 
molybdenum and copper radiations under a variety of conditions in order to show the magnitude of the 
systematic error introduced by the use of an inappropriate expression. The effect of the polarization 
expression on the extinction correction is also discussed. 

The expression for the polarization correction for crys- 
tal-monochromatized radiation is well known for the 
case of the double-crystal spectrometer. In this geom- 
etry, hereinafter referred to as 'normal '  geometry, the 
monochromator crystal lies in the equatorial plane of 
a three- or four-circle diffractometer with its rotation 
axis perpendicular to the equatorial plane. The beam 
incident on the monochromator crystal is randomly 
polarized and thus can be represented as the sum of two 

equal components polarized parallel (Z = 90°) and per- 
pendicular (Z=0  °) to the equatorial plane of the dif- 
fractometer. The relative intensities of the components 
are: 

I11 =ll  ~½Io. 

Since the intensity of radiation diffracted in a particular 
direction is proportional to sin z ~0, where ~0 is the angle 
between the electric vector and the direction of ob- 


